Schottky Barrier Diode Quads for Double Balanced Mixers

Technical Data

Features
• Small Size
 Eases Broad Band Designs
• Tight Match
 Improves Mixer Balance
• Improved Balance over Temperature
• Rugged Design

Description/Applications
This matched diode quad uses a monolithic array of Schottky diodes interconnected in ring configuration. The relative proximity of the diode junction on the wafer assures uniform electrical characteristics and temperature tracking.

These diodes are designed for use in double balanced mixers, phase detectors, AM modulators, and pulse modulators requiring wideband operation and small size. The low barrier diodes allow for optimum mixer noise figure at lower than conventional local oscillator levels. The wider dynamic range of the medium barrier diodes allows for better distortion performance.

Note: For new designs, the HSMS-820X series of surface mount microwave diodes are recommended.

Maximum Ratings
Operating and Storage Temperature Range
E4 .. -65°C to +125°C

DC Power Dissipation ... 75 mW per Junction
 Derated linearly to zero at maximum rated temperatures
 (measured in infinite heat sink at $T_{CASE} = 25°C$).

Soldering Temperature
E4 .. 220°C for 10 sec

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.
Electrical Specifications at $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Barrier</th>
<th>Maximum Measured Capacitance C_M (pF)</th>
<th>Maximum ΔC_M (pF)</th>
<th>Maximum ΔV_F (mV)</th>
<th>Maximum R_D (Ω)</th>
<th>Forward Voltage V_F (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5082-2830</td>
<td>E4</td>
<td>Medium</td>
<td>0.5 Typ.</td>
<td>0.20</td>
<td>20</td>
<td>12</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Test Conditions
- $V_R = 0$
- $f = 1 \text{ MHz}$
- $I_F = 5 \text{ mA}$
- $I_F = 1 \text{ mA}$
- $I_r = 1 \text{ mA}$

where I_B is the bias current in milliamperes. The series resistance is independent of current.

The dynamic resistance is more easily measured. If series resistance is specified, it is usually obtained by subtracting the calculated junction resistance from the measured dynamic resistance.

Quad Capacitance
Capacitance of Schottky diode quads is measured using an HP4271 LCR meter. This instrument effectively isolates individual diode branches from the others, allowing accurate capacitance measurement of each branch or each diode. The conditions are: 20 mV R.M.S. voltage at 1 MHz. HP defines this measurement as “CM”, and it is equivalent to the capacitance of the diode by itself. The equivalent diagonal and adjacent capacitances can then be calculated by the formulas given below.

In a quad, the diagonal capacitance is the capacitance between points A and B as shown in figure below. The diagonal capacitance is calculated using the following formula

$$C_{\text{DIAGONAL}} = \frac{C_1 \times C_2}{C_1 + C_2} + \frac{C_3 \times C_4}{C_3 + C_4}$$

The equivalent adjacent capacitance is the capacitance between points A and C in figure below. This capacitance is calculated using the following formula

$$C_{\text{ADJACENT}} = C_1 + \frac{1}{1 + \frac{1}{C_2} + \frac{1}{C_3 + C_4}}$$

Package Characteristics
The HP outline E4 package is designed for MIC, Microstrip, and Stripline use from dc through C-Band. The leads provide a good continuity of transmission line impedance to the monolithic diode array. The leads are tin plated copper.

Dynamic and Series Resistance
Schottky diode resistance may be expressed as series resistance, R_S, or as dynamic resistance, R_D. These two terms are related by the equation

$$R_D = R_S = R_j$$

where R_j is the resistance of the junction. Junction resistance of a diode with DC bias is quite accurately calculated by $R_j = 26/I_B$

SPICE Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>5082-2830</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_V</td>
<td>V</td>
<td>10</td>
</tr>
<tr>
<td>C_{30}</td>
<td>pF</td>
<td>4</td>
</tr>
<tr>
<td>E_q</td>
<td>eV</td>
<td>0.69</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>A</td>
<td>10E-5</td>
</tr>
<tr>
<td>I_S</td>
<td>A</td>
<td>2x10E-10</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>1.08</td>
</tr>
<tr>
<td>R_S</td>
<td>Ω</td>
<td>6</td>
</tr>
<tr>
<td>P_B</td>
<td>V</td>
<td>0.65</td>
</tr>
<tr>
<td>P_F</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>